

Student Number
Class Teacher

NORMANHURST BOYS HIGH SCHOOL

NEW SOUTH WALES

2011 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

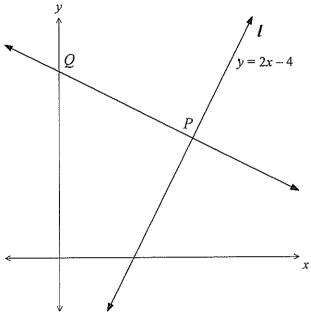
General Instructions

- o Reading Time 5 minutes.
- o Working Time 3 hours.
- o Write using a blue or black pen.
- o Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (120)

- Attempt Questions 1-10.
- o All questions are of equal value.

Ques	stion 1 (12 Marks) Use a Separate Sheet of paper	Marks
a)	Expand and simplify $(2x-3y)^2 - 5x(x-2y)$.	2
b)	Express 2.405 as a mixed number in simplest form.	2
c)	Express $6^{-\frac{2}{5}}$ as a surd, with no fractional or negative indices.	1
d)	Find $\lim_{x \to 3} \frac{x^2 + 5x - 84}{x - 7}$	2
e)	Find the exact solutions of $2x^2 - x - 9 = 0$.	2
f)	Factorise $6x^2 - 3xy - 4xz + 2yz$.	2
g)	Evaluate $\log_5\left(\frac{1}{25}\right)$.	1

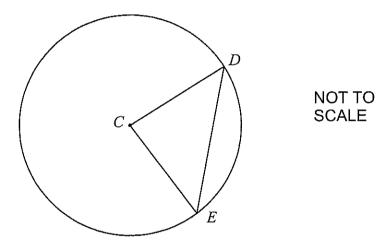

Question 2 (12 Marks)

Use a Separate Sheet of paper

Marks

1

a) The sketch below shows the line PQ and the line (I) y = 2x - 4, which is perpendicular to PQ.


- (i) Show that the point R (3, 2) lies on the line I.
- (ii) Q is the point (0, 5). Find the midpoint of QR.
- (iii) Find the equation of the line PQ.
- (iv) Find the gradient of QR.
- (v) Find the distance QR in simplest surd form.
- (vi) Find the distance PQ.
- b) Find

$$\int \frac{x^2}{x^3 + 1} dx$$
 1

(ii)
$$\int_{1}^{2} \frac{x^{3}+1}{x^{2}} dx$$

Marks Use a Separate Sheet of paper Question 3 (12 Marks) Find: a) $\frac{dy}{dx}$ when $y = \frac{2}{3\sqrt{x^3}}$. (i) 1 $\frac{d}{dx}(\cos^2 x)$ 1 (ii) the derivative of $\frac{e^{2x}+4}{x^3}$. 2 f'(x) if $f(x) = (x^3 - 2x) \cdot \ln(x)$. (iv) 2

b) A circle has centre C and radius 12 cm. The length of the arc DE is 2π cm.

(i) Find \(\angle DCE\) (in radians).

1

(ii) Find the area of the minor segment cut off by the chord DE.

2

3

Given that $\frac{d^2y}{dx^2} = \frac{2}{x^2} + 2e^{2x}$ and that, when x = 1, $\frac{dy}{dx} = e^2$ and $y = \frac{e^2}{2}$, find an expression for y in terms of x, with no other unknown variables.

3

3

c)

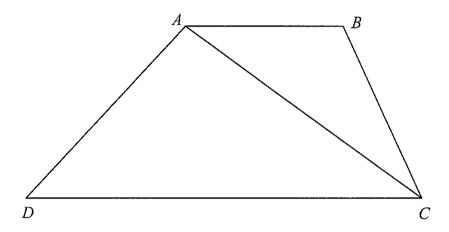
d)

the curve where x = 1.

Use a Separate Sheet of paper **Question 4** (12 Marks) Marks Damien runs a marathon, which is a distance of 42 km. He runs the first kilometre in 4 minutes, and from there on, he takes 5 seconds longer to run each successive kilometre. (i.e the 2nd kilometre takes 4 minutes and 5 seconds.) How long does he take to run the 16th kilometre? 1 (i) How long does it take to run the entire marathon? 1 (ii) How far had he run after 2 hours 36 minutes and 15 seconds? 2 (iii) The sketch shows the curve $y^2 + x^4 = 16$. b) 2 4 -2 The area enclosed within the curve is rotated about the x axis. Find the volume of the solid of revolution so formed.

End of Question 4

Find the equation of the normal to the curve $y = x \ln x$ at the point on


Draw a sketch showing the graph of $y = 2 + 2\sin 3x$ for $0 \le x \le 2\pi$

Question 5 (12 Marks)

Use a Separate Sheet of paper

Marks

a) The figure ABCD is a trapezium. $\angle ABC = \angle DAC$. AB = 12 cm, AD = 20 cm and AC = 24 cm.

(i) Prove that $\triangle ABC \parallel \mid \triangle ADC$.

(ii) Calculate the length of BC.

2

2

- b) On a single set of axes, show the region where the following inequalities hold simultaneously.
- 3

$$x + 2y - 8 < 0$$

$$x^2 + y^2 \le 16$$

$$y \ge x^2$$

(c) Find the values of m for which the expression below is always positive. $x^2 + 2mx + (3m - 2)$

2

3

(d) The sum of the first 10 terms of the series

$$\log_2(\frac{1}{x}) + \log_2(\frac{1}{x^2}) + \log_2(\frac{1}{x^3}) + \dots + (x > 0)$$
 is 440. Find

the value of x.

Question 6 (12 Marks)

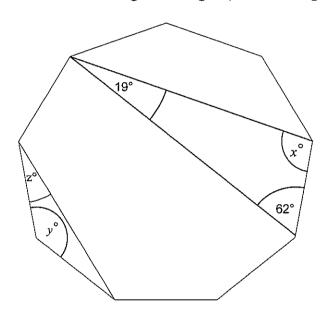
Use a Separate Sheet of paper

Marks

5

a) Draw a sketch graph of the function $y = 2x^3 - 10x^2 + 6x$, for the domain $-1 \le x \le 4$, showing any turning points and inflections and the end points for the domain.

.41 IX


- b) For the curves $y = x^3 + x^2 5x$ and $y = x^3 + 4x 18$
 - (i) Show that the curves intersect at points whose x values are x = 3 and x = 6.

2

(ii) Find the area enclosed between the two curves between these points of intersection.

2

c) The diagram below shows a regular nonagon (nine sided figure).

1

(i) Find the value of x.

1

(iii) Find the value of z.

(ii)

1

End of Question 6

Find the value of y (the internal angle of the nonagon).

1

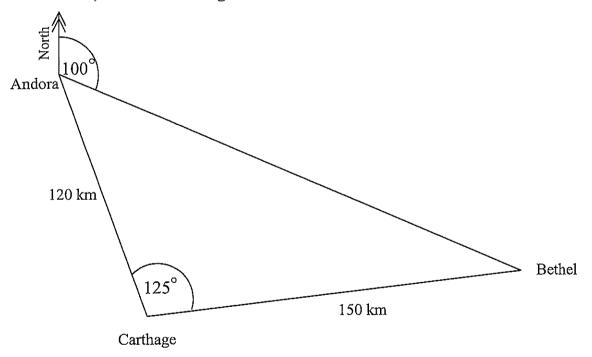
2

Questio	on 7 (12 Marks) Use a Separate Sheet of paper	Marks
	Use the trapezoidal rule with two function values to find an approximation for $\int_{1}^{3} \ln(x+1) dx$, correct to 1 decimal place	2
(b)	Find $\frac{d(10^x)}{dx}$	2
(c) '	The graph of $y = f'(x)$ is shown below.	
	(i) Give the x values for the turning points of $y = f(x)$. (ii) Draw a sketch of $y = f'(x)$. (iii) Draw a sketch of $y = f''(x)$.	1 2 2

End of Question 7

If $sin(\frac{\pi}{2}-x)=cos A$, find A.

Hence show that $\frac{d(\cos x)}{dx} = -\sin x$


(i)

(ii)

(d)

Quest	tion 8	(12 Marks)	Use a Separate Sheet of paper	Marks
a)	For the	$ parabola x^2 = -16y +$	32.	
	(i)	Give the vertex and for	ocus of the parabola.	2
	(ii)	Find the equation of t	the tangent to the parabola at the point (8, -2).	2
	(iii)		hord which is parallel to the tangent above has thus are $x = 8 \pm 8\sqrt{2}$.	2
b)	the are	a bounded by the curve	ntinuous for $x \le 0.5$, find an approximation to $y = \tan(e^x)$, the lines $x = -0.4$ and $x = 0.4$ as rule with 3 function values.	2

c) The diagram below shows the relative positions of three towns called Andora, Bethel and Carthage.

(i) Calculate the distance from Andora to Bethel.

2

2

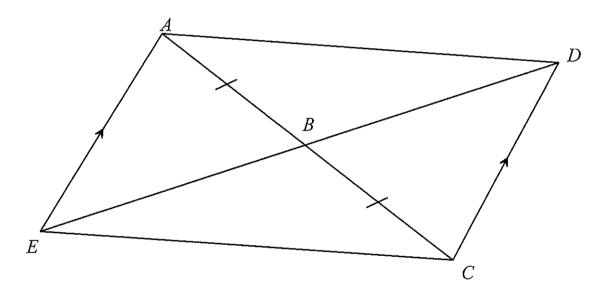
(ii) Given the bearing of Bethel from Andora is 100°, find the bearing of Carthage from Andora.

Question 9 (12 Marks) Use a Separate Sheet of paper

Marks

- Rhonda takes out a loan for \$48 000 on terms where no repayments are made a) for a year and then equal monthly repayments are made for a further 3 years. Interest is compounded at 1.5% per month on the current monthly balance for the full duration of the loan, (including the time when no repayments are made). The repayment (\$N) is deducted each month before the interest is calculated.
 - (i) Show that the amount still owing, 15 months after the loan is taken out is given by:

2


$$48000(\frac{1.105}{1.015})^{15} - N(1.015 + 1.015^{2} + 1.015^{3}).$$

What will be the amount of each repayment (\$N)? (ii)

4

In the figure below, AB = BC and $AE \mid\mid DC$. b)

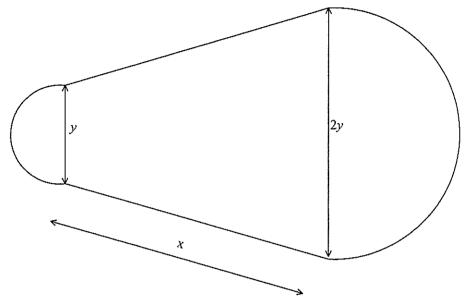
3

Prove that $\triangle ABE \equiv \triangle CBD$ and hence that AD = CE.

Prove that $\sin\theta + 1 + \cos\theta \cot\theta - \csc\theta = 1$ c)

3

Question 10 (12 Marks)


Use a Separate Sheet of paper

Marks

a) Solve $3x^2 + 14x - 24 \le 0$.

2

b) The track for a race is in the shape shown, with two semicircular curves, one whose diameter is twice that of the other. It also has two straights which are equal in length. The total length of the track is 400 km.

- 2
- (i) Using x km to represent the length of the straight and y km for the diameter of the smaller semicircle, show that $y = \frac{800 4x}{3\pi}$.

3

(ii) The average speed that a vehicle can attain on a lap of the track depends on the length of the straights. Given that the average speed that a certain vehicle can attain on the track is given by:

Speed = $100 - \left(\left(\frac{x}{30} \right)^3 + \frac{\pi}{6} (y) \right)$

find the length of straight which maximizes the speed of this vehicle.

Question 10 continues.

Marks Question 10 continued. On Joshua's 20th birthday he decides to start investing money for his (c) retirement. He plans to invest \$30 at the end of each month for the next 40 years so that he can retire on his 60th birthday. The interest rate remains at 8% per annum over the 40 years and he will be paid interest monthly. 2 Show that the amount he can expect his investment to grow to is (i) given by the expression $30 + 30(1-2) + 30(1-2)^2 + 30(1-2)^3 + \dots 30(1-2)^{479}$ After 20 years he decides to increase his monthly investment to \$60. 3 (ii) Find the total value of his investments after 40 years.

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

NBAS

2011 Trial hsc examination

Mathematics

SOLUTIONS

Ques			2011
Part	Solution	Marks	Comment
Ð	$6x^{2} - 3xy - 4xz + 2yz = 3x(2x - y) - 2z(2x - y)$ $= (2x - y)(3x - 2z)$	2	1 for partial factors 1 for
			completing result
g)	$\log_3\left(\frac{1}{25}\right) = \log_3\left(5^{-2}\right)$	1	1 for answer
	$= -2 \log_3 (5)$ $= -2$		
		/12	

Onz	idon I Trisi MCC Exambadisa - Madiemadisa		10215
Port		Thicris	2011
			1
3)	$(2x + 3y)^2 + 5x(x + 2y) = 4x^2 + 12xy + 9y^2 + 5x^2 + 10xy$	2	I mark for
	$=9y^2-x^2-2xy$		expanding
	- ûx 7û.	Ì	1
		1	l mark for collecting
			like terms
b)	x = 2.405	2	1 for
	100x = 340.505		working
	1		either as
	99x = 238.1		shown or
	990x = 4581	İ	the internation
	$x = \frac{2381}{990}$		i for
	3 401	İ	evaluating
	$x = 2 \frac{401}{990}$		answer
c)	$6^{-\frac{5}{5}} = \frac{1}{\frac{2}{6}}$	11	1 mark for
	6 = 1		either of last
	65	1	two lines
	f		
	≈ 1 \$√6 ²		
	• •	l	
	= <u>1</u> √36		
d)		_	
۵,	$\lim_{x \to 3} \frac{x^2 + 5x - 84}{x - 7} = \lim_{x \to 5} \frac{(x + 12)(x - 7)}{(x - 7)}$	2	l for factorisation
	$x \leftrightarrow y x \leftrightarrow y x \to z (x \leftarrow y)$	- OR	ractorisation
	= lim (x + 12) Stilvski	C5-60.	factorisation I for answer
	= 3 + 12		
	≈ 15		
e)	$2x^2 - x = 9$	2	I for
	$2x^2 - x \sim 9 \approx 0$		formula or
i		İ	completion of square
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		o∙ adnute
			1 for result
	$= \frac{1 \pm \sqrt{1 - 4(2)(-9)}}{2(2)}$	500	c- 2-
		Character	UC (1)
-	$=\frac{1\pm\sqrt{73}}{4}$	>0	lution

Quest	tion 2 Trial HSC Examination - Mathematics		2011
Part	Solution	Marks	Commen
a)	y≈ 2x-4	1	
(i)	Substitute the point $R(3,2)$		
	RMS = 2(3) - 4		
	≈ 6-4		
	≖ 2 = LHS	İ	
	$\therefore R$ lies on $y = 2x - 4$ Midpoint of the interval joining $Q(0.5)$ and $R(3.2)$		
a) (ii)		1	
(1-)	$Midpoint = \left(\frac{0+3}{2}, \frac{5+2}{2}\right)$		
	$=\left(\frac{3}{2},\frac{7}{2}\right)$		
	$=\left(1\frac{1}{2},3\frac{1}{2}\right)$		
a)	(2, 2)		
(iii)	PQ is perpendicular to $y = 2x - 4$ which has gradient = 2	2	l for gradient
	$\therefore \qquad \text{gradient of } PQ = -\frac{1}{2}$		correct
	y Intercept =5		
	Equation is $y = -\frac{1}{2}x + 5$ { $x + 2y - 10 = 0$]		I for equation using gradient
a)	Gradient of the interval joining $Q(0,5)$ and $R(3,2)$	1	gratient
(iv)	$m = \frac{y_* - y_*}{x_* - x_*}$		
İ	$=\frac{2-5}{3-0}$		
	$=-\frac{3}{2}$		
	•		
	=-1 Length of the uncryal joining \(\overline{\chi}(0.5)\) and \(\hat{\chi}(3,2)\)		
a) (v)	$d \approx \sqrt{(x_s - x_s)^2 + (y_s - y_s)^2}$	2	l for distance
	$= \sqrt{(3-0)^2 + (2-5)^2}$		
	= .10 ± 0		
	= 1/18 =	-	l for simplifyir
	=3.52		anud and

Vraer.	tion 2 Telef MSC Emerclandion - Planticameter		2011
	Solution	l-Earks	
a) (vi)	Perpendicular distance from $(0, 5)$ to $y = 2x - 4$ i.e. $2x \sim y \sim 4 = 0$ Perp dist = $\left \frac{\alpha x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right $	2	1 for substitution in formula
	$= \left \frac{2(0) - (5) - 4}{\sqrt{2^2 + (-1)^3}} \right $ $= \left \frac{-9}{\sqrt{5}} \right $	2	I for suswer in either surd form
	= 1/5 = 9/5 OF 1/2 cor 11/6		
b) (i)	$\int \frac{x^2}{x^2 + 1} dx = \frac{1}{3} \int \frac{3x^2}{x^3 + 1} dx$]	
	$=\frac{1}{3}\ln(x^3+1)+C$		
b) (ii)	$\int_{1}^{2} \frac{x^{2} + 1}{x^{2}} dx = \int_{1}^{2} x + x^{-2} dx$	2	1 mark for integral
	$= \left[\frac{x^2}{2} + \frac{x^{-1}}{-1} \right]^2,$		l mark for
	$= \left(\frac{4}{2} - \frac{1}{2}\right) - \left(\frac{1}{2} - 1\right)$		evaluation of integral
		१५८६ इ.स्ट	r
		/12	

	Non 3 Triol HSC Exemination - Mathematics Solution	Marks	2012 *
Part			
a) (i)	$y = \frac{3}{3\sqrt{x^3}} = \frac{2}{3}x^{-\frac{5}{2}}$ $\frac{dy}{dx} = \frac{2}{3}x\left(-\frac{3}{2}\right)x^{-\frac{5}{2}}$ $\frac{-x^{-\frac{5}{2}}}{-x^{-\frac{5}{2}}}$	T-	Accept either of the final 2 answers shown for 1 mark
a) (ii)	$= \frac{-1}{\sqrt{x^5}}$ $\frac{d}{dx}(\cos^2 x) = 2\cos x(-\sin x)$	1	Accept either
٠-,	= 2sinx cosy = - sin 2n		
a) (iii)	$ = -2\sin x \cos x $	2	I mark for correctly applying product rule or question rate or equivalent I mark ha simplifying
a) (iv)	$f(x) = (x^3 - 2x) \cdot \ln(x)$ $f'(x) = (x^3 - 2x) \cdot \frac{1}{x} + (3x^2 - 2)\ln(x)$ $= x^2 - 2 + (3x^2 - 2)\ln(x)$	2	, ,
		04	
b) (i)	Arc length $= r\theta = 2\pi \text{ cm}$ $12\theta = 2\pi$ $\theta = \frac{2\pi}{12} = \frac{\pi}{6}$	1	accept 30° rewetantly

Ques	ion 3 Trial HSC Examination - Mathematics		2011
Part	Solution	Marks	Comment
b) (ii)	Solution Area of sector $= \frac{1}{2}r^2\theta$ $= \frac{1}{2}(12^2)\left(\frac{\pi}{6}\right)$ $= 12\pi \text{ cm}^2$ Area of $\triangle DCE = \frac{1}{2}z.d.\sin C$ $= \frac{1}{2}(12^2)\sin\left(\frac{\pi}{6}\right)$ $= \frac{1}{2}.144.\frac{1}{2}\text{ cm}^2$	2	I mark if either sector or triangle area calculated correctly $A = \frac{1}{2} I^2 \left(\frac{\pi}{4} - \frac{\pi}{12} \right)$ $= \frac{1}{2} I^2 \left(\frac{\pi}{4} - \frac{\pi}{12} \right)$ $= \frac{1}{2} I^2 - \frac{\pi}{2} I^2$ $= \frac{1}{2} I^2 - \frac{\pi}{2} I^2$
	$= 36 \text{ cm}^2$ Area of segment = $12\pi - 36 \text{ cm}^2$	02/3	2 marks if the area of the segment is found correctly
6)	$\frac{d^2y}{dx^2} = \frac{2}{x^2} + 2e^{2x}$ $= 2x^{-2} + 2e^{2x}$ $\frac{dy}{dx} = -2x^{-1} + e^{2x} + C_1$ When $x = 1$, $\frac{dy}{dx} = e^2$ $e^2 = -2 + e^2 + C_1$	3	I mark for integration to get $\frac{dy}{dx}$, disregarding constants.
	$C_1 = 2$ $\frac{dy}{dx} = -2x^{-1} + e^{2x} + 2$ $y = -2\ln x + \frac{e^{2x}}{2} + 2x + C_2$ When $x = 1, y = \frac{e^2}{2}$		1 mark for C,
	$\frac{\varepsilon^{2}}{2} = -2\ln(1) + \frac{\varepsilon^{2}}{2} + 2(1) + C_{2}$ $\frac{\varepsilon^{2}}{2} = 0 + \frac{\varepsilon^{2}}{2} + 2 + C_{2}$ $C_{1} = -2$ $y = -2\ln x + \frac{\varepsilon^{2x}}{2} + 2x - 2$	0 4/61	1 mark for correct y r including constant
	$y = -2\ln x + \frac{y}{2} + 2x - 2$		

Ouest	on 4 Trial ESC Examination - Mathematics		2011
	Solution	Marks	Comment
a)	This is an Arithmetic series with	1	
(i)	$a = 4 \approx 60 = 240$, $d = 5$ Want the 16^{th} term		
	$u_n = a + (n-1)d$		ļ
	= 240 ÷ 15 × 5		
	= 315 sec	ļ	
į .	= 5 min and 15 sec	1	
a)	Want the sum of the 42 km.	1	
(ii)	$S_n = \frac{11}{2}(2\alpha + (n-1)d)$		
1	= 21(480 + 41 × 5)	ļ	
	= 14 385 sec		-
	= 3 hrs 59 min 45 sec	2	
a)	2 hours 36 minutes and 15 seconds = 9375 sec	-	
(iii)	$s_n = \frac{n}{2}(2\alpha + (n-1)d)$		
	Barrer av Ann		1 for sub
	$9375 = \frac{n}{2}(480 + 5(n-1))$	_	into the
	$18750 \approx n(475 + 5n)$		formula
	$5n^2 + 475n - 18750 = 0$		
1	$n^2 + 95n - 3750 = 0$		
	$n = \frac{-95 \pm \sqrt{9025 + 15000}}{2}$		l for solving
	= <u>-95±155</u> 2	9/	the equation
	= 30 or -125	/4	-
L	Ignore the negative, so he has travelled 30 km.		

Oues	den J Telei USC Ecomination - Mathematics		2011
	Solution	Marks	Comment
b)	$y^2 + x^4 = 16$.	2	
	Limits are from -2 to 2		
	(°2)		I for integral
	$V = \pi \int_{-\infty}^{\infty} y^2 dx$		
	ي ج		
	$= \pi \int_{-2}^{2} 16 - x^{2} dx \qquad \text{of } 2\pi \int_{0}^{2\pi} (45 - 2x^{2}) dz dz$		
! 	$=\pi \left[16x - \frac{x^3}{5}\right]_{-2}^2$) 	1 for
	,		numerical
	$= \pi \left[\left(32 - \frac{32}{5} \right) - \left(-32 + \frac{32}{5} \right) \right]$		value
	$= \frac{256\pi}{5} \approx 160.8 \text{ units}^3$ $y = x \ln x$		
0)	$p = x \ln x$	3	1 for
li	$\frac{dy}{dx} = x, \frac{1}{x} + \ln x . 1$		derivative
	= 1 + înx		
	when x = 1		1 for
	$y=1$. $\ln 1 = 1 \times 0 = 0$		gradient
	$\frac{dv}{dv} = 1 + \ln 1$		of normal

	=]		
	Gradient of tangent = 1		_
	Gradient of normal = -1 Normal through (1, 0) with gradient -1		1 for equation
	v = 0 = (-1)(x - 1)	05	4-quarion
	y = -x + 1	05/5	
d)	$y = 2 + 2\sin 3x$	3	3 marks
	ý 4 0		with 1 deducted
			if period,
		ļ	amplitude
	2 / / / / /		position is
		00	incorrect.
		02	
	H 34 * An 55 24 3	13	
		/12	

	Gon 5 Trial ESC Empiliados - Flathemades		2011
Part	Selution	Marto	Солимена
a) (î)	20 cm 24 cm	2	I mark for including the correct angle equivalence
	In $\triangle ABC$ and $\triangle DAC$ $\angle ABC = \angle DAC$ (given) $\angle BAC = \angle ACD$ (alternate angles on lines) $\therefore \angle ACB = \angle ADC$ (angle sum of triangle) $\therefore \triangle ABC \parallel \triangle DAC$ (corresponding angles equal)		I raid f reasons for the above
i) ji)	$\frac{BC}{AD} = \frac{AB}{AC}$ (corresponding sides of similar triangles $\frac{BC}{20} = \frac{12}{24} = \frac{1}{2}$ are in the same ratio)	2	I for correct initial proportion
	$BC = 20 \times \frac{1}{2}$ $BC = 10 \text{ cm}$		l for answer

	Question 5 Trial HSC Examination - Mathematics		
Part	Solution	Marks	Comment
ъ		3	I for each of the inequalities with I mark taken off if wrong border used on any of the regions
	Coefficient of $x = 1 > 0$ Expression positive if $\Delta = b^2 - 4ac < 0$ ie $4m^2 - 4.1.(3m-2) < 0$ $4m^2 - 12m + 8 < 0$ $m^2 - 3m + 2 < 0$ (m - 2)(m - 1) < 0	2	1 for correctly substituting into Δ
	Ref. points are m = 1 and m = 2 \therefore 1 < m < 2		l for correct solution
	$\begin{aligned} -log_{3}x - 2log_{3}x - 3log_{3}x - \dots &= 440 \\ \text{AP with } a = -log_{3}x , d = -log_{2}x \\ \text{Sn} = \frac{\pi}{2} [2\alpha + (n-1)d] \\ \text{J40} = \frac{19}{2} [-2, \log_{2}x + (10-1)(-\log_{2}x)] \end{aligned}$	3	I for recognising AP with correct a and d values
	$340 = 5(-11 \log_2 x)$ $38 = -11 \log_2 x$ $8 = -\log_2 x$ $-3 = \log_2 x$ $x = 2^6$		correctly substituting into Sn formula
- 1		/12	~ WHYII

Question 6 Trial HSC Examination - Mathematics		2011
Part Solution	Marks	Comment
(ii) $y = 2x^2 - 10x^2 + 6x$ $y' = 6x^2 - 20x + 6$	5	l for turning points
$= 6x^2 - 18x - 2x + 6$ $= 6x(x - 3) - 2(x - 3)$		I for classifying
= 2(3x-1)(x-3)		1 for inflexion
$y' = 0$ when $x = \frac{1}{3}$ and $x = 3$ y'' = 12x - 20		1 for
		diagram
Test turning points $x = \frac{1}{3}$, $y'' = -16$ Local Max $x = 3$, $y'' = 16$ Local Min		l for end points
$y'' = 0$ when $x = 1\frac{2}{3}$ $y = -8.5$ Inflexion since		
change in con	cavity.	
$(-1, -18) \stackrel{\text{red}}{=} \begin{cases} 1\frac{2}{3}, -8.5 \end{cases}$ (1.318) Min	-8)	
b) Solve simultaneously (i) 3 7	2	l for equation
$y = x^{2} + x^{2} - 5x$ and $y = x^{2} + 4x - 13$,
$x^3 \div x^2 - 5x = x^3 \div 4x - 13$		l for x values
$(x^2 - 9x + 13) = 0$		Tutues
(x-3)(x-6)=0		
x=3 or x=6		

Quest	ion 6 Trial HSC Examination - Mathematics		2011
Part	Solution	Merks	Comment
b) (ii)	Area = $\int_{0}^{6} x^{2} + x^{2} - 5x - cx^{2} + 4x - 181 dx$	2	I for correct integration
	$= \left \int_{0}^{\infty} x^{2} - 9x + 18 \ dx \right $		l for area
	$= \left[\frac{x^5}{3} - \frac{9x^2}{2} + 10x \right]^6$		
İ	$= \left (18) - \left(22 \frac{1}{2} \right) \right $		
	= 4½ sq units		
c) (i)		1	
	16"		•
	1,° 02°		
	x = 180 - (62 + 19) = 99°		
) ii)	Angle sum = $(9-2) \times 180$ = 1260	1	
	Internal angle $=\frac{1260}{9}$		
)	$y = 140^{\circ}$ $z = \frac{180 - 140}{2}$	1	
ii)	2 ≈ 20°		
\neg		/12	

	ion 7 Trial HSC Examination - Mathematics		2011
	Solution	Marks	Comment
b) (iii) b) (iii)	y = f(x) $y = f'(x)$ $y = f''(x)$	2	2 marks total for including turning points and inflexions 1 mark for a sketch with one or two minor errors Position on y axis and x intercepts is not important 2 marks total x intercepts are important at 2 and 8 1 mark for a sketch with one or two minor errors
c) (i) c) (ii)	$A = x$ Let $y = \cos x$ $= \sin(\frac{\pi}{2} - x)$ $\frac{dy}{dx} = -\cos(\frac{\pi}{2} - x)$ $= -\sin x$		

Oues	don 7 Trici HSC Examination - Picthemetics		2011
Part	Solution	Links	Comment
a) (i)	Let $f(x) = ln(x + 1)$ f(1) = ln(2) f(3) = ln(4) $\int_{1}^{3} ln(x + 1) dx = \frac{3}{2} (ln(2 + ln4))$ = 2.079	2	I correct substitution into trapezoidal rule I for correct solution.
a) (ii)	Let $y = 10^{\circ}$ = $e^{th/10}$ $y' = \ln 10e^{th/10}$ = $\ln 10(10^{\circ})$	2	I mark for y = e ^{th/10} I mark for correct answer
b) (i)	Turning points occur where $x = -1$, $x = 5$ and $x = 10$		

Quest			2011
Part	Solution	Marks	Comment
a) (i)	$x^2 = -16y + 32$ $x^2 = -4$, (4)(y - 2) Vertex (0, 2) focal length 4 and concave down	2	i each for vertex and focus
a) (ii)	Focus (0, -2) $x^{2} = -16y + 32$ $-16y = x^{2} - 32$ $y = \frac{x^{2}}{-16} + 2$ $\frac{dx}{dx} = -\frac{x}{8}$ When $x = 8$, $\frac{dy}{dx} = -1$ Equation is $y + 2 = -1(x - 8)$ y + 2 = -x + 8	2	I for gradient I for equation
a) (iii)	$y = -x + 6$ $y + 2 = -1(x - 0)$ $y = -x - 2$ Sub into parabola $x^{2} = -16(-x - 2) + 32$ $x^{2} - 16x - 64 = 0$ $x = \frac{16 \pm \sqrt{256} + 256}{2}$ $x = \frac{16 \pm \sqrt{512}}{2}$ $x = \frac{16 \pm 16\sqrt{2}}{2}$ $x = 3 \pm 8\sqrt{2}$	2	I for solving simultaneo usly I for x values
b)	$h = 0.4 A = \frac{h}{3} [(sum of ends) + 4(middle)]$ $x_1 = -0.4 = \frac{0.4}{3} [(f_1 \cdot 0.4) + f_2(0.4)) + 4f_3(0)]$ $= \frac{0.4}{3} [(19.66)]$ $x_2 = 0 = 2.62 (2 decimal places)$ $x_3 = 0.4$	21	I for using correct function values I for sub in to formula correctly

	tion S Trial HSC Examination - Mathematics		2011
Part	Solution	Marks	Comment
c) (i)	$AB^{2} = 120^{2} + 150^{2} - 2 + 120 + 150 + \cos 125^{\circ}$ $= 57.549$	2	I for using cosine rule
	AB = 239.89 = 240 m (nearest metre)		l for correct calculation
c) (ii)	$\frac{\sin 4}{150} = \frac{\sin 125^{\circ}}{240}$	2	I for using Sine rule
	$\sin A = \frac{150 \sin 125^{\circ}}{340}$		(or cosine rule) to find A
	= 0.51219	İ	
	A = 31° (nearest degree)		1 for
	Bearing = 100° + 31°		bearing
	= 131°		from that answer
		/12	

					78 # 45000(1.0
					= \$204
			L	.1	
Question 9 Trial HSC Examination - Mathematics Pa Solution	Маг	2011 Comment	Questi		Trial HSC Examination - Ma
rt	ks	Comment	Part	Solution	
))	4	3 marks for	a)	$3x^2 + 14x$	- 24 ≤ 0
1	İ	congruence I mark		$3x^2 + 13x - 4x$	
D		deducted if			
	4	any of the		3x(x+6)-4(x	•
B /		three steps		(3x-4)(x	+ 6) ≤ 0
		needed (including		Test between	$x = \frac{4}{3} \text{ and } x = -6$
		reasons), or			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	the			$x = 0 - 24 \le 0$ True
E	İ	conclusion			-6 ≤ x ≤ ½
C	-	are missing.	۱ _	<u> </u>	3
In A ABE and A CBD				•	
∠ABE = ∠CBD (verticallyu opposite angles)	•				
$\angle AEB = \angle BDC$ (Alternate angles on lines)	į	1 mark for			
AB = BC (given)	•	statement as			
	1	to why			
$\therefore \triangle ABE = \triangle CBD (AAS)$!	AD = CE			
$\therefore AE = CD$					
ADCE is a paralleogram (A pair of opposite sides parallel and equal)					
:. AD = CE (Other pair of opposite sides of \gram are equal)	:				
Hang	3	3			
$\sin\theta + 1 + \cos\theta \cot\theta - \csc\theta = \sin\theta + 1 + \cos\theta \frac{\cos\theta}{\sin\theta} - \frac{1}{\sin\theta}$	3	3 marks for full proof			
£		rua proor			
$\sin^2\theta + \sin\theta + \cos^2\theta - 1$ $\sin\theta$					
		2 marks for			
$= \frac{\sin^2\theta + \cos^2\theta + \sin\theta - 1}{\sin\theta}$		partial proof			
= 1 ÷ sinθ − 1 sinθ		I mark if one			
sinθ		or two			
<u>≈ sin⊎</u> sinθ		relevant equivalences			
		are stated			
** (
	/12				

	stion 9 Trial HSC Examination - Mathematics		2011
Pa rt	Solution	Mar	Comment
a) (i)	For the first year interest accumulates with no payments so new balance after 12 is given by: $A_{12} = 48000(1.015)^{12}$	2	l mark for attempt to obtain serie
	= 57 389.60 After 13 months A_{ix} = $(48000(1.015)^{12} - N) \times 1.015$		by writing previous months
	= $48000(1.015)^{13} - 1.015N$ After 14 months $A_{1i} = (48000(1.015)^{15} - 1.015N - N) \times 1.015$		2 marks if completed t
	$= 48000(1.015)^{14} - (1.015)^{2}N - 1.015N$ After 15 months $A_{15} = ((48000(1.015)^{14} - (1.015)^{2}N - 1.015N) - N) \times 1.015$		required resuit
	$= 48000(1.015)^{15} - (1.015)^3 N - (1.015)^2 N - 1.015 N$		
3)	$= 48000(1.105)^{15} - \lambda(1.015 + 1.015^{2} + 1.015^{3})$	3	
ii)	After 48 months $A_{xx} = 48000(1.105)^{45} - N(1.015 + 1.015^2 + \dots 1.015^{47-12} + 1.015^{48-12})$	3	1 mark for obtaining expression for 48 months
	After 48 months $A_{ss} = 48000(1.105)^{48} - M(1.015 + 1.015^2 + \dots 1.015^{35} + 1.015^{35} + 1.015^{36})$		
İ	Loan is repaid after 48 months so $A_{43} = 0$		I for obtaining the
	$48000(1.015)^{46} = N(1.015 + 1.015^{2} + \dots 1.015^{35} + 1.015^{36})$		expression for sum of
	1.015 + 1.015 ² +1.015 ³⁵ + 1.015 ³⁶ is a geometric series with $a = 1.015$, $r = 1.015$ and $n = 36$		series
	Sum of series $=\frac{a(r^r-1)}{r-1}$		
	$= \frac{1.015(1.015^{36} - 1)}{1.015 - 1}$		I for final result
	$= \frac{1.015(1.015^{36} - 1)}{.015}$		
	$4\$000(1.015)^{48} = N\left(\frac{1.015(1.015^{36} - 1)}{.015}\right)$		
	$N = 48000(1.015)^{48} \times \frac{0.015}{1.015(1.015^{30} - 1)}$ = \$2044 (to nearest dollar.)		

Quest		tion - Mathematics	2011
Part	Solution	Mar ks	Comment
a)	$3x^{2} + 14x - 24 \le 0$ $3x^{2} + 13x - 4x - 24 \le 0$	2	1 for factorising
	$3x(x+6) - 4(x+6) \le 0$ $(3x-4)(x+6) \le 0$		I for correct solution
	Test between $x = \frac{4}{3}$ and $x = -6$;	
	x = 0 -24 ≤ 0	True	
	-6 ≤ x ≤ ¹ / ₃		

b) (i)	$P = 2x + \frac{\pi V}{2} + \pi V$ $P = 400$	2	l for equation for P
	$400 = 2x + \frac{\pi v}{2} + \pi v$		
	$300 = 4x + \pi y \div 2\pi y$		1 for making y
	$300 = 4x + 3\pi y$ $x = 300 - 4y$		the subject
	$y = \frac{300 - 4x}{3\pi}$		1
(ii)	Speed = $100 - \left(\left(\frac{\pi}{30} \right)^3 + \frac{\pi}{6} (y) \right)$	3	I for sub y into Speed
İ	$S = 100 - \left(\frac{x}{30}\right)^3 - \frac{\pi}{6}\left(\frac{800 - 4x}{3\pi}\right)$		cquation
	$S = 100 - \frac{x^3}{27000} - \frac{800 - 4x}{18}$		
	$\frac{dS}{dt} = -\frac{3x^2}{27000} + \frac{4}{18}.$		
	$-\frac{3x^2}{27000} + \frac{4}{18} = 0$		I for finding derivative
	$x^2 = \frac{4}{18} \times \frac{27000}{3}$		and setting =0
	= 2000		
	$x = \sqrt{2000}$		
	x = 44.7		
	$\frac{d^2S}{dt^2} = -\frac{6x}{27000} = -\frac{x}{4500}$:	
	when $x = 44.7$		
	$\frac{d^2S}{dt^2} = -\frac{44.7}{4500} = -0.009777$	1	1 for finding x
	\therefore Local Max when $x = 44.7$;	and showing max

(i) 40 years = 480 mondig correct			۵
Total = $30 + 30(1.007)^{1} + 30(1.007)^{2} + \dots 30(1.007)^{379}$ S ₁ 1.2.3 and S ₁ Total if addition = $\{30 + 30(1.007)^{2} + 30(1.007)^{2} + \dots 30(1.007)^{2} = 5\}$ Adjusted total = $S_{1} + S_{2}$ $= \frac{30(1.007^{20} - 1)}{1.007 - 1} + \frac{50(1.007^{20} - 1)}{1.007 - 1}$ $= 4285.7(1.007^{400} - 1) + 1500(1.007^{20} - 1)$ $= 4285.7(1.007^{400} + 1.007^{240} - 2)$ $= $136 236$ Or $S_{240} = 30 + 30(1.007)^{1} + 30(1.007)^{2} + \dots 30(1.007)^{20}$ $S_{241} = S_{240}(1.007) + 60$ $S_{242} = (S_{30}(1.007) + 60) + (S_{30} + (S_{30}(1.007)^{2} + (S_{30}$	40 years = 450 months $A_{344} = 30 (1 + 0.007)^{47}$ = 30(1.007) ⁴⁷⁰ I	12	expression
(ii) Adjusted total = $S_1 + S_2$ $= \frac{30(1.007^{103} - 1)}{1.007 - 1} + \frac{30(1.007^{240} - 1)}{1.007 - 1}$ $= 4285.7(1.007^{450} - 1) + 1500(1.007^{240} - 1)$ $= 4285.7(1.007^{450} - 1 + 1.007^{240} - 1)$ $= 4285.7(1.007^{450} - 1 + 1.007^{240} - 2)$ $= $136 236$ Or $S_{240} = 30 + 30(1.007)^{1} + 30(1.007)^{2} + \dots, 30(1.007)^{350}$ $S_{240} = \frac{30(1.007^{240} - 1)}{1.007 - 1}$ $S_{241} = S_{240}(1.007) + 60$ $S_{242} = (S_{340}(1.007) + 60)(1.007 + 60)$ $= (S_{340}(1.007)^{2} + 60(1.007)^{2} + 60(1.007) + 60$ $S_{240} = (S_{240}(1.007)^{240} + 60(1.007)^{250} + 60)$ $S_{440} = (S_{240}(1.007)^{240} + 60(1.007)^{250} + 60)$ $S_{440} = (S_{240}(1.007)^{240} + 60(1.007)^{250} + 60)$ $= S_{240}(1.007)^{240} + 60(1.007)^{250} + 60(1.007)^{250} + 60$ $= S_{240}(1.007)^{240} + 60(1.007)^{250} + 60(1.007)^{250} + 60(1.007)^{250}$ $= (S_{240}(1.007)^{240} + 60(1.007)^{240} + 60(1.007)^{250} + 60(1.007)^{250}$ $= (S_{240}(1.007)^{240} + 60(1.007)^{240} + 60(1.007)^{250} + 60(1.007)^{250}$ $= (S_{240}(1.007)^{240} + 60$	 ·		1.2,3 and
	Adjusted total = $S_1 + S_2$ = $\frac{30(1.007^{100} - 1)}{1.007 - 1} + \frac{50(1.007^{240} - 1)}{1.007 - 1}$ = $4285.7(1.007^{400} - 1) + 1500(1.007^{240} - 1)$ = $4285.7(1.007^{400} - 1 + 1.007^{240} - 1)$ = $4285.7(1.007^{400} + 1.007^{240} - 2)$ = 8136.236 Or $S_{240} = 30 + 30(1.007)^4 + 30(1.007)^2 + \dots 30(1.007)^{240}$ $S_{240} = \frac{30(1.007^{240} - 1)}{1.007 - 1}$ $S_{240} = \frac{30(1.007^{240} - 1)}{1.007 - 1}$ $S_{240} = \frac{30(1.007)^4 + 60}{1.007} + 60$ = $S_{240}(1.007)^2 + 60(1.007) + 60$ $S_{240} = (S_{240}(1.007)^2 + 60(1.007) + 60$ = $S_{240}(1.007)^3 + 60(1.007)^2 + 60(1.007 + 60$ $S_{340} = (S_{240}(1.007)^{240} + 60(1.007)^{230} + 60(1.007 + 60$ $S_{340} = (S_{240}(1.007)^{240} + 60(1.007)^{230} + 60(1.007 + 60)$ = $S_{240}(1.007)^{240} + 60(1.007)^{230} + 60(1.007 + 60)$ = $S_{240}(1.007)^{240} + 60(1.007)^{2$	01	correct S ₂ or equivalent I for correct substitution into S ₁ or S ₂ I for correct
	1 = \$1.50 255	/12	